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One method which has been used in the literature to determine the eigenvalues 
F~ m of  a hamiltonian operator 2r 3-+ ~" (~-=  kinetic energy operator) is 
to apply an approximation scheme (e.g. variational method) to the operator 
~R( /3)=  3-+~176176 with eigenvalues Gk(/3), where the eigenvalue 
problem associated with y((0~ = 3-+ ~V is solvable. Specifically, F~ ~ = Gk(1). 
We investigate the method from a perturbation theoretic viewpoint. There is 
a "renormalization map"  R :/3 ~ A, /3 ~ [0, 1], A ~ [0, ec), which relates the 
G(/3) to the eigenvalues E(A) of ~(A)  = 3-+ ~+A~ This, in turn, implies 
a linear relationship between the Rayleigh-Schr6dinger/3-series coefficients 
G ~'~ and the A-series coefficients E (') of  the form G = CE, where C is an 
infinite lower-triangular matrix. The "renormalized" /3-series, 0-</3-< 1, is 
useful in the accurate computation of F (~ as well as the eigenvalues E(A), 
0-< A < ec. In standard cases, the/3-series is Borel summable to G(/3). Applica- 
tions are made to anharmonic oscillators and hydrogen atoms in radial fields. 

Key words: Perturbation theory - -  Summability 

1. Introduction 

Some years ago, Bell et al. [1} calculated eigenvalues of  N-dimensional  quartic 
oscillators given by the hamiltonians (in atomic units, rescaled here), 

~ ' =  p2+ r4, (1.1) 

using the Rayleigh-Ritz variational method. They performed these calculations 
in the complete basis of  (discrete) eigenfunctions of the N-dimensional  oscillator 

~Ho = p 2 +  r 2 (1.2) 

by constructing the hamiltonian 

~R(fl)=~Ho+/3(r4--r2), 0 5 / 3 - < l .  (1.3) 

* Dedicated to Professor J. Kouteck~ on the occasion of his 65th birthday 
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The case /3 = 1 clearly corresponds to (1.1), whereas /3 =0  corresponds to the 
"unperturbed" hamiltonian in (1.2). An intermediate value of 13 corresponds to 
a mixing of harmonic and quartic terms. From a theoretical chemical point of 
view, this mixing could conceivably model a realistic molecular vibration poten- 
tial. In this report we wish to examine (albeit rionrigorously) the technique 
exemplified in Eq. (1.3) from the viewpoint of perturbation theory, especially in 
light of some basic knowledge about Rayleigh-Schr6dinger (RS) expansions, 
their large order behavior, and their summability. (For a review of the progress 
of large order perturbation theory (LOPT) and its applications in theoretical 
physics and quantum chemistry, we refer the reader to [2] which contains the 
contributions to the 1981 Sanibel Workshop on LOPT.) 

To illustrate, let us remark upon the above example. The case/3 = 1 in Eq. (3) 
corresponds to an "infinite-field limit" of perturbation theory. Consider the 
following anharmonic oscillator hamiltonian 

~ ( A ) = p 2 + r 2 + A r  4, A>0.  (1.4) 

Travelling the route of RSPT, we construct the series expansions 

E(A)=  ~ E~")A" (1.5) 
n = 0  

for the various states. Equation (1.4) represents a singular perturbation [3], (i.e. 
r 4 grows faster than r 2) and the series in (1.5) is divergent. If  we perform the 
Symanzik scaling transformation [4] r ~ ~r, a ~ R (the transformation is unitary), 
multiply the Schr/Sdinger equation associated with (1.4) by 2 ,  then set o~ = A-~/6, 
we obtain a new eigenvalue problem 

~o~(/z) = F(tz), (1.6) 

where 

~ ( / x )  = p2 + r4+/zr 2 (1.7) 

and 

F(A -2/3) = X - " E  (A ). (1.8) 

Equation (1.7) represents a regular perturbation in the parameter tt = A -2/3 (i.e. 
r 2 is bounded relative to r4), so F( t t )  has an expansion 

oo 

FOx) = • F~")/z ", (1.9) 
n = 0  

which converges for /x < R, where 0 < R  <oo. Note that F <~ represents the 
appropriate eigenvalue of the hamiltonian in (1.1), which is obtained in the limit 
A ~ co, hence the term "infinite field limit". Moreover, Eq. (1.8) gives the large-A 
behavior of the eigenvalues E (A) of (1.4): 

oo 

E(A) ~Al/3 Z F(")A-2"/3, h~cx3. (1.10) 
n = 0  

In practice, however, it is generally difficult to compute the coefficients F ~"). 
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One of the goals of LOPT has been to calculate the infinite-field eigenvalues F (~ 
from the "low-field" RS perturbation series [5]. It has been shown [6] that 
continued fraction representations of RS perturbation can be used in this regard. 
However, from a RSPT viewpoint, a technique like Eq. (1.3) yields such infinite 
field behavior with lesser effort. The basic idea of this approach is as follows. 
Start with a standard Schr6dinger eigenvalue pro~olem 

[Y((~ + a 7d/']~p(A)= E(A)O(A), (1.11) 

where 74/" is generally a singular perturbation and the solvable "unperturbed" 
eigenvalue problem is given by 

~(~176 = (3-+ T') O(k ~ E(k~ ~ (1.12) 

Here, 3 is the kinetic energy operator, ~V a potential energy operator and the 
index k = (kl, . . . ,  k,) enumerates quantum states completely. Note that here we 
are working witl~ the relatively simple problem of determining perturbations of 
discrete (bound) states. Associated with Eq. (1.11) are the standard RS expansions 

~o 

Ek(A)= • E?)A ". (1.13) 
r t ~ O  

We now wish to calculate the eigenvalues of the (infinite field) eigenvalue problem 

Yg'tp~, = (3-+ 7g')O'k, = Fk,O'k,, (1.14) 

this time, if possible, from RSPT. Here we are assuming that the state k' is 
obtained from the state k in (1.12) in a continuous fashion. Again, this problem 
may usually be derived from Eq. (1.11) by an appropriate scaling transformation: 

[3-+ 7U+ A-~176 = A bE(A)O(A), a ,b>O, (1.15) 

which implies that 

E(A) ~ F(~ b as A -~ oo. (1.16) 

In the spirit of Eq. (1.3), we define the following "renormalized" hamiltonian 
with eigenvalues G(fi), 

~ R ( / 3 )  = 3 - +  ~+/~(~- ~) = O( /3) .  

It follows that 

G ?  ~= G~(0) = E~ ~ 

and 

Gk(1) = F~ ~ 

We adopt a perturbative method 
expansion for Eq. (1.17), 

O(/3)= Z G(n)# ". 
n = O  

(1.17) 

(1.18) 

(1.19) 

of evaluating Gk(1), i.e. construct the RS 

(1 .2o)  
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Since Eq. (1.17) still represents a singular perturbation problem, the series in 
(1.20) may be divergent. Nevertheless, in well-behaved cases, like those considered 
below, the series may still be summable. 

We shall refer to the/3-series in (1.20) as the "renormalized" perturbation series 
corresponding to the RS series in (1.13). There is a justification for this nomen- 
clature, since, as will be seen for the examples studied, the coefficients G ~n~ and 
E ~") (corresponding to the same state) are related by a linear transformation of 
the following form 

G (n~= ~ c,, ,E (m~. (1.21) 
m=0 

In other words, if we let E = (E (1), E(2) , . . . ) t  and G = (G (1), G(2), . . . ) t  then 

G = CE, (1.22) 

where C is an infinite lower-triangular transformation matrix whose truncations 
are invertible. Moreover, a problem defined over the infinite range of coupling 
constant values 0 --- A < ~ has been replaced by one defined over the finite interval 
0 -</3 _< 1. A similar renormalization occurs in the Wick-ordering of simple quan- 
tum field theories, like the ~4 model [7, 8]. More will be said on this relation below. 

The approach outlined above will be applied to two major types of hamiltonians 
which have served as excellent testing grounds for perturbation methods: 

(a) one-dimensional anharmonic oscillators (AHO), given by the hamiltonians 

d 2 
ff(m(A)=-dx-----}+x2q-Ax2m = E~c(A), m = 2 , 3 , 4 , . . .  (1.23) 

with unperturbed eigenvalues E~:(0) = E~  )'m = 2K + 1, K = 0, 1, 2 , . . . ,  

(b) three (space)-dimensional hydrogen atoms in radial fields 

YCP(A) = - � 8 9  Ar p = E%LM(A), p = 1, 2, 3 , . . . ,  (1.24) 
r 

with unperturbed eigenvalues EPLM(0) = ~=(0)'PNLM = - (2N2)  -1. 

The extension of these hamiltonians to arbitrary spatial dimensions is straightfor- 
ward. In order to minimize any notational complications, A will represent the 
formal perturbation parameter in both problems. The renormalized parameter 
will be represented by/3. 

It is also noteworthy to mention that there is no loss of generality in the choice 
of anharmonic oscillator hamiltonians in Eq. (1.23). Any oscillator problem of 
the form 

d 2 
~(A ) = - a ,  ~x2+ a2x 2 + a3Ax 2m = F(A ) (1.25) 
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may be easily transformed into (1.23) by the scaling transformation x--> r~/2x so 
that 

\ al / '  \ a2/ " 

The parameter a2 is important in quantum field theories and al in quark 
confinement studies [9] since they contain the mass term. In theoretical spectros- 
copy, the parameters a2 and a3 (and A) can adjust the mixing of harmonic and 
anharmonic terms in intramolecular vibrational potentials. 

The layout of the rest of this paper is as follows. Section 2 outlines the main 
aspects of RSPT, summability methods and hydrogenic perturbation theory which 
form the basis of this study. In Sect. 3, we look at the anharmonic oscillators of 
(1.23) and analyze the rescaling of the quartic AHO, m = 2 .  In Sect. 4, the 
hydrogenic problems of Eq. (1.24) are considered, with a specific application to 
the "charmonium" case p = 1. In Sect. 5, we use the renormalized perturbation 
series to accurately calculate eigenvalues E (A) for the entire spectrum of coupling 
constant values 0 < A < ~ ,  with specific application to the quartic AHO. Section 
6 is devoted to some concluding remarks. 

2. Brief remarks on summability techniques, continued fractions 
and hydrogenic perturbation theory 

As in many situations encountered in quantum mechanics, the eigenvalue prob- 
lems in Eq. (1.23) and Eq. (1.24) represent singular perturbation problems which 
yield Rayleigh-Schr6dinger expansions with zero radius of convergence. 
Although divergent, RS series may be asymptotic and summable to the eigenvalues 
E(A) by techniques such as Pad6 approximants-continued fractions [10] or the 
method of Borel [11]. We outline the major ideas concerning these summability 
methods below. 

The RS expansions studied in this paper have the generic form 

~(a)= y ~~ (2.1) 
n = 0  

and are divergent but asymptotic to E(A), with the large order behavior of the 
E (") typically given by 

E ( " ~ = ( - 1 ) " + l A e " F ( m n + d ) ,  n-->c~, (2.2) 

where A, c, d and m are constants, with m = 1, 2, 3 , . . . .  For many "standard" 
perturbation problems, like the two classes studied here, the RS expansions in 
(2.1) are negative Stieltjes for n-> 1 [4], i.e. 

E ("~ --- - ( - 1 ) " a , ,  n -> 1, (2.3) 

where 

an = x " p ( x )  dx (2.4) 



370 E.R. Vrscay 

are the positive moments of a non-negative distribution p(x) on the real line, 
given by 

p(x)=--~xl I m E ( - l + i 0 ) "  (2.5) 

Motivated by a previous interest in the relationship between RSPT and continued 
fractions (CF), the numerical calculations in this report have concentrated on 
the CF summability of the renormalized series, which, as shown below, is 
equivalent to Pad6 summability. A study of other numerical methods, including 
Borel summability and sequence transformations is currently in progress [12]. 
The CF representations assume the form 

E(A) = E(~ AC(A), (2.6a) 

where 

r C(z) = 

r 2 
I + - -  

I + ' ' "  

(2.6b) 

For comprehensive treatments of the theory of continued fractions, we refer the 
reader to [13, 14]. Further information on the relationship between CF's and RS 
perturbation series is to be found in Ref. [6]. For a Stieltjes series as in Eq. (2.6), 
the continued fraction C(A) in (2.6b) is an S-fraction, i.e. all coefficients cn are 
positive. 

In general, the CF coefficients c,, n = 1, 2 , . . . ,  N, may be calculated from the 
RS coefficients E ("), n = 1 , . , . ,  N, by the quotient-difference (QD) algorithm 
[15, 13]. The terminating CF composed of the first N coefficients e, in (1.27) is 
known as the Nth convergent to C(z), often denoted as wN(z). It is easy to 
show that WN(Z)is a rational function, i.e. 

AN(z) wN(z) = N = 0, 1, 2 , . . . ,  (2.7) 
BN(z)' 

with deg (AN(z)) = ~(N- 1)/29 and deg (BN(Z)) = ~N/2], where ~x~ denotes "the 
greatest integer contained in x". When C(z) represents a formal power series 
P(z) ofa  functionf(z),  then W2N(Z) and W2N+I(Z) are, respectively, the [ N -  1, N] 
and [N, N] Pad6 approximants [10] to the series. If  the series is Stieltjes, hence 
C(z) an S-fraction, the even and odd convergents satisfy the inequality 

W2u(z)<f(z)<wzN+a(z), N = 0 ,  1 , 2 , . . . .  (2.8) 

If the series is Pad6-summable, then the sequences {w2N(z)} and {w2n+l(Z)} 
provide, respectively, lower and upper bounds to f(z) which converge to it in 
the limit N ~ oo. 

We now outline the Borel summability method [11], which has become quite 
relevant to perturbation theory since it invokes the large order behavior of the 
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power series coefficients. Given a funct ionf(z)  which is represented by the formal 
power series 

a ( z ) =  ~ a.z n, (2.9) 
n--O 

we define its Borel transform as 

a n  co 

B ( z ) :  2 - - z ' =  ~ b,z n, (2.10) 
n = 0  n [ n = 0  

and the inverse Borel transform as 

1 e-'/ZB(t) dt. (2.11) z - -  

g(z )  z 

The following results constitute Watson's theorem [16, 17]. Suppose that f (z )  is 
analytic in the sectorial region D(& R)={z :  Iz[<R, [arg z]-<7r/2+A, 0 < ~  < 
~r/2} and admits the asymptotic expansion 

N 
f(z)~- Y, a ,z"+RN(z) ,  z~O, (2.12) 

n=0 

with 

a, = O( n ! cr"), (2.13a) 

IRN(z)] <~ ao-~:+l(N + 1) !lz[ N+', (2.13b) 

uniformly for all N and z in D()t, R). Then 

(a) B(z) converges in the circle Iz[ < o --~ and has analytic continuation to the 
sector [arg z[ < A 
(b) g(z) is absolutely convergent in the region CR = {z: I z -R /2]  < R/2} and 
g(z) =f (z )  there. The asymptotic series (2.4) is said to be Borel summable to f (z )  
for zc  CR. 

Sokal [18] has presented a variation of Watson's theorem which reduces the 
region necessary for analyticity of f (z) .  I f f ( z )  is analytic in CR and the estimates 
in (2.13) are satisfied uniformly in N and in zc  CR then 

(a) B(z) has analytic continuation from the region [z I < o --~ to the striplike region 
s~  = {z: Iz - w[ < ~ ~, w ~ R+};  

(b) f ( z ) =  g(z) for z c CR as before. 

This result will be important in establishing the Borel summability of the renormal- 
ized series G(/3) in Eq. (1.20). 

The Borel method discussed above is not directly to asymptotic series whose 
coefficients diverge faster than n !, for example m ->- 2 in Eq. (2.2). A generalization 
of this method is possible for these cases: cf. [3], p. 45. 

Concerning the hydrogenic perturbation problems studied in this paper, we have 
employed the "so(4, 2) Lie algebra technology" [19, 20] to calculate perturbation 
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coefficients. This method reformulates hydrogenic problems into eigenvalue prob- 
lems over a discrete Sturmian basis. In this way, the problems presented by the 
existence of continuum states are bypassed. For problems such as (1.24), as well 
as Stark and Zeeman problems, each order of perturbation theory involves only 
a finite number of summations. Its application to the hamiltonians in (1.24) is a 
straightforward extension of the p = 1 "charmonium" problem discussed in [21]. 
(In fact, the general case p -> 1 is discussed in Sect. V of [21].) 

3. Anharmonic oscillators (AHO) 

Let the RS expansions for the oscillator hamiltonians in Eq. (1.23) be denoted as 

ET<(A)= Y. A~)"A ", K = 0 , 1 , 2 , . . .  (3.1) 
r l = 0  

where A~ ) ' m = 2 K + l .  Historically, a detailed analysis of the quartic AHO 
(QAHO), m = 2, by Bender and Wu [22] and Simon [4] introduced the era of 
large order perturbation theory (LOPT). It should be mentioned that Reid [23] 
actually performed the first summability studies of the QAHO perturbation series 
several years earlier by means of continued fractions. 

The large order behavior of the RS coefficients E (n)'m was determined by Bender 
and Wu using WKB techniques, and can be summarized by the interesting compact 
formula [24] 

,--( l'ln+l(m-- . l l [ F ( 2 m / ( m - - 1 ) ) ' ]  (m-1)'~+1/2 
a ~  )'" ~ ' ' 1)2KF[(m - 1)n + 

(3.2) 

(Note that this formula differs slightly from Eq. (3) in Ref. [24] since the 
hamiltonians in (1.23) are  rescaled.) In all cases the perturbation series are 
divergent and asymptotic to E~(A) in the cut plane larg A[ < 7r, the region of 
analyticity of E~z(A). The series are also negative Stieltjes for n-> 1. Only for 
m = 1, 2 is the series Pad6-summable in the cut plane to E~:(A). The Borel 
summability of the series for rn >_ 1 has also been established [25, 26]. 

The infinite field expansions for these anharmonic oscillators assume the form 

E m ( h ) = h  1/(m+1) ~ F(n)'mh -2n/(m+l), h~O,  (3.3) 
n = 0  

where the F (~ are the eigenval.ues of the oscillators 

d 2 
~m = . . . . . . .  dx2 + x2,,,. (3.4) 

We now define the renormalized hamiltonians 

d z 
~'~(j3) = - ~ x 2 +  x2 +/3(x2 'n-x  2) = G~(/3) (3.5) 
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and apply RSPT to produce a series expansion of Gin(/3), 

G m ( / 3 ) = 2 g + l +  ~ G(n)'m/3 n. (3.6) 
n=l 

Our goal is to assign a sum to (3.6) for /3  = 1, since G~:(1) = F ~  )'m. As shown 
below, the series is Borel summable for/3 ~ [0, 1]. There is no guarantee, however, 
that it is Stieltjes and Pad6 summable. The numerical treatments in this paper 
will still employ the Pad6-CF methods, however, because there is good indication 
that the series is summable in this way. 

Some caution should be exercised when employing summability techniques 
(especially Pad~-CF) to the series in (3.6). The perturbation 7/2 = x 2m - x 2 is not 
positive definite since it possesses negative minima a t  x = + m  -1/(2m-2) with 
absolute value 

g = m -x / ( ' ' - l ) -  m -m/(m-1). (3.7) 

In order to ensure positive definiteness of 74# (we would like E (1~ in Eq. (2.3) to 
be positive), we "shift" the perturbation upwards, rewriting Eq. (3.5) as 

d 2 
: ~  "d ( /3 ) = - 7 - x S  X ~ - /3 g + /3 ( x ~ " - x ~ + g ) 

= ~ , ~  + / 3 ~ ,  (3.8) 

with unperturbed eigenvalues G~ ) ' "=  2K + 1-/3g. Our series expansion then 
assumes the form 

G m ( / 3 ) = 2 K  + l - / 3 g +  ~ C3(n)''/3 n (3.9) 
n=l 

where (~(1),,~ = G(~+g,  ~,(n),,. = F(n),m for n > 1. 

In order to demonstrate a relationship between the RS coefficients A (n~''~ and 
the renormalized coefficients G (n~'m, let us write the hamiltonian in (3.5) as 

d 2 
~ ( / 3 )  = -Tx~+ (1 -/3)x2 +/3x TM = G"(/3). (3.10) 

We now rescale this hamiltonian via the coordinate transformation x -+ c~x, where 
c~ = (1 _/3)-1/4, to give 

d 2 
(1-/3)  1/2 [--~'--X2 q-X2-'}" 1 ~m+l)/2 X2m . 1) Yg~(/3) = ( _ / 3 )  ] (3.1 

A comparison of (3.11) and (1.23) shows that 

/3 
G'*'(/3 ) = ( 1 -  /3 )1/2E" ( ( l _ /3 )-'7,,,+a)/2). (3.12) 

This equation reveals the renormalization map R :/3 -+ a which, restricted to the 
nonnegative real line, maps [0, 1] onto [0, oo). 
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Substituting the perturbation expansions into (3.12), 
C~3 OO 

G(')"/3 " =  Y~ A(n)'m/3n(l-[3)-[n(m+l)-l]/2, (3.13) 
n ~0 n =0 

and using the binomial expansion formula, 

F ( a + k )  
(1 - f i ) - "  = 5 0  l ~ ( - ~ ( -  ~ 1)/3k' (3.14) 

we equate like powers of fi in (3.13) to give 

G(,~,,,, = ~ F ( ( m - 1 ) k / 2 + n - 1 / 2 )  
k=o r ( (m + 1 ) k / 2 -  1/2])F(n - k + 1) A(k)'m" (3.15) 

This equation defines the transformation matrix C in Eq. (1.22). We also have 
the result 

G(n)'m=o([(m-1)n][), n~oe. (3.16) 

A more precise calculation of the asymptotics for the case m = 2 follows below. 

The Borel summability of the renormalized series in (3.9) may now be established. 
E" (A)  is analytic in ]arg hi < ~r and the suitable branch of h = f l (1- /3)  -("+1)/2 
is analytic in/3 ~ CR(1). Hence, Gm(fl) is analytic in CR(1). An argument similar 
to Simon ([4], p. 128) can now be used to establish the asymptotic nature of the 
renormalized RS series. The asymptoties given in (3.16) then give an estimate of 
the error between the partial sum of the series and G "  (/3). From the conditions 
in Eq. (2.13), this ensures Borel summability of the series to G m (/3) on the interval 
[0, 1], 

3.1. Specific application to quartic anharmonic oscillator (m = 2) 

We shall first employ Eq. (3.15) to determine the dominant large-n behavior of 
the renormalized series coefficients G (n~ (we omit the m = 2 superscript here). 
First, let us write the large order behavior of the A (") in Eq. (3.2) in the generic 
form 

A(~)~,(-1)"+lDc"F(n+d), n~oe. (3.17) 

Now, divide both sides of (3.15) by A (') and rewrite summation indices to give 

G~  ) A~ -j~ F(3 n / Z - j / 2 - 1 / 2 )  
a(~ ) -  ~ A(~ ) F(3n /2-3 j /Z-1 /Z)F( j+I )"  (3.18) j=0 

In the limit n ~ 0% we collect the dominant contribution from each term in the 
summation to give 

G ~  ) 3 j 1 
a ~ )  - [)=~o ( - l Y  ( ~ e )  f l ]  (1 + O ( 1 ) )  

n ~ oo. (3.19) 
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Since e = 3/2, we have the result 

G(rn)-e-l(l+O(1)), n~oo. (3.20) 
A~ ) 

This result has been verified numerically for several K levels. It is very similar 
to the relationship between RSPT and the Wick-ordered perturbation series 
associated with the (~4 field theory, as derived by Bender and Wu (cf. Sect. VII 
of [7]), although not exactly the same, since the renormalizations are different. 

We now present some numerical estimates of the eigenvalues F ~  ) of the hamil- 
tonian Y( in Eq. (3.4), as afforded by the renormalized perturbation series. For 
K = 0, 1, the coefficients (~),r~ in Eq. (3.9) have been computed to order n = 40, 
from which the continued fraction representations 

GK(/3) = 2 K + l - f l g + f l C K ( f l )  (3.21) 

are then constructed. In all cases, the CF coefficients e, are positive and the 
sequences {C2k} and {C2k 1} observed to increase monotonically. In Table 1 we 
present the values of GK (1) yielded by the convergents W39(1 ) and W4o(1) which 
correspond, respectively, to [19, 19] and [19, 20] Pad6 approximants to the series. 
For comparison, the variational results of [1] are presented. The CF coefficients 
e, have been calculated to order n = 70 and are observed to be positive. This, 
along with the bounding properties afforded by the convergents, as seen in Table 
1, strongly suggests Stieltjes behavior and Pad6-summability. This still remains 
to be rigorously analyzed, however. 

Let us again mention that these calculations are not meant to represent definitive 
numerical results, but rather to demonstrate the validity of the renormalization 
method. Nevertheless, the results are quite accurate. The achievement of extremely 
accurate estimates by Pad6, Borel or other summability schemes is reserved for 
future discussion [12]. Calculations for quartic anharmonic oscillators in higher 
dimensions have also been performed. The results behave in a similar fashion as 
above and will not be reported here. 

Table 1. Estimates of eigenvalues F(~ ) of the one-dimensional 
quartic oscillator ;~(2 in Eq. (3.4), as obtained from a Pad6- 
continued fraction summation of  the renormalized/3-series in 
Eq. (3.9). The values in the final column are taken from [1] 

K [19, 19] [19, 20] F ~  ) 

0 1.060364 1.060359 1.060362 
1 3.79965 3.79970 3.799673 
2 7.4556 7.4558 7.455698 
3 11.6444 11.6451 11.644745 
4 16.261 16.263 16.261825 
5 21.240 21.236 21.238373 
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4. Generalized eharmnnium problems 

We shall denote the RS expansions for the hydrogenic hamiltonians in Eq. (1.24) 
a s  

co 

1 t- ~ ,~NLM,~(n)'P ~,, (4.1) E~LM(A) = 2N 2 ,=, 

where E PNLM(;t ) represents the eigenvalue of the perturbed state g'NLM ('~) which 
arises from the discrete hydrogenic eigenstate 4~NLM when the perturbation ;trv 
is applied. The large order behavior for the RS coefficients follows a pattern quite 
similar to that of the anharmonic oscillators in Eq. (3.2). The result is [21, 27] 

E(n) . I ( - -1 )n+132N22N-x  [ L ( L + I ) ]  
NL~ 7 r N 3 ( N + L ) ! ( N _ L _ I ) ! e x p  - 3 N q  N 

x(.3N3)nF(n+2N), n~oo, (4.2a) 

and, for p -> 2, 

E(.),p _ (-1)"+'p2 4u/p-2u-a [F(1/2+l/p)F(p+2)]  2N 

• 2N), n-~oo, (4.2b) 

where 

F(I /2  + 1/p)F(p + 2)N ~+2/p 
c - F(1/p)F(3/2)22_x/p 

In fact the oscillator problems of (1.23) and the hydrogenic problems in (1.24) 
are related by a nonlinear transformation of coordinates. This connection was 
first pointed out for the special case (m = 2, p--1)  by Johnson [28] and then 
derived for general radial problems by Cizek and Paldus [29]. Banerjee [30] has 
explicitly related the two problems (1.23) and (1.24) although the relationship 
between the LOPT formulas (3.2) and (4.2) is not as transparent. 

The infinite field expansions for these problems are given by 

EP(A)=A 2/(p+2) ~ F(n)'PA -n/(p+2), A #0,  
n = 0  

where F (~ are eigenvalues of the hamiltonians 

~P =- �89  r p, p = 1 ,2 , . . . .  

The renormalized hamiltonians are then defined as 

~(P(fl) = - ~ V 2 - ~ +  f l ( l+rp)=GP( f l )  

to which we apply RSPT, i.e. 

(4.3) 

(4.4) 

(4.5) 
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1 ~- ~ G(.~,v/3 . 
G P ( / 3 )  = 2 N  2 n = l  

1 
- 2N  2 t-AG(/3). (4.6) 

Using the "so(4, 2) approach" mentioned in Sect. 2, we transform (4.5) into the 
perturbation equation 

( ~3 - N ) + / 3 ( N  + NP+2r p+a) - rN2AG(/3) = 0. (4.7) 

The operator T3 is defined in [21]. Note that the seemingly problematic Coulomb 
perturbation in (4.5) becomes a constant in (4.7), contributing only to the 
first-order correction. 

We now proceed in a fashion similar to that in Sect. 3 in order to ascertain the 
relationship between the renormalized coefficients G ('~'v and the RS coefficients 
E (n>'p. We may work directly on the original hamiltonian Y(~(/3) in (4.5) by first 
rewriting it as 

Y{P(/3) = -�89 2 (1 - /3 )  ~_/3rp = GP(/3) (4.8) 
r 

and then scaling by r ~  ar, where a = (1 - /3 )  -1, to give 

~f~(/3) = ( 1 - / x )  2 -�89 2 -  +(1 rp " (4.9) 

The renormalization relation between (1.24) and (4.5) is thus given by 

/3 GP(/3)=(1-/3)2EP((1 -~)p+2). (4.10) 

Analogous to Eq. (3.13) in Sect. 3, we have the equation 
co ~x3 

E G("~'P/3 "= E E( ' ) 'P/3"(1-/3)  [,(p+2~-2] (4.11) 
n = 0  n = O  

and using the binomial expansion formula (3.14) we obtain the relationship 

G(.),p = ~ F ( ( p + l ) k + n - 2 )  E(k),p" (4.12) 
k=o F((p +2 )k  - 2)V(n - k +  1) 

This relation also implies that the renormalized coefficients G (')'~ behave 
asymptotically as O([pn] !). A more precise expression for the case p = 1 is derived 
below. With this results, Borel summability of  the renormalized/3-series follows, 
following our previous discussion for the case of  anharmonic oscillators. 

4.1. Specific application to charmonium (p = i) 

In the same way as for the quartic anharmonic oscillator case (cf. Eqs. (3.16-19)) 
we can find the large-n behavior of the renormalized series coefficients G ('~ 
(omitting the superscript p = 1). The final result is 

~('~LM = e -2/N3 1 + O  , n~oo.  (4.13) 
~ N L M  
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Table 2. Estimates of eigenvalues "NLo=(O) of the three-dimensional "Airy 
hamiltonian" Yg~ in Eq. (4.4), as obtained from a Pad6-continued fraction 
summation of the renormalized fl-series in Eq. (4.6). For L = 0, the F~ ~ 
are the negative zeros of the Airy equation, whose tabulated values are 
taken from [31]. For nonzero L, ~he values given are the numerical results 
of [32] 

N L [19, 19] [20, 20] w(o) NLO 

1 0 1.855754 1.855761 1.855757 
2 0 3.24430 3.24575 3.244607 
2 1 2.66781 2.66784 2.6679 
3 0 4.370 4.388 4.381671 
3 1 3.87673 3.87681 3.8768 
3 2 3.37174 3.37182 3.3718 

E. R. Vrscay 

We now present the numerical  estimates of  the eigenvalues F ~  ) of  the hamil tonian 
y(1 in Eq. (&4). (This hamil tonian defines a three-dimensional  Airy eigenvalue 
equation.) For  N = 1, 2, 3, L = 0, 1 , . . . ,  N - 1, M = 0, the coefficients --,re.Mr"(") in 
Eq. (4.6) have been computed  to order  n = 4 0 .  F rom these coefficients are 
computed  the convergents w l , . . . ,  W4o of  the cont inued fraction representat ion 

1 
G N c M ( / 3 ) - -  2 N  2 t - ~ C ( / 3 )  (4.14) 

evaluated at /3 = 1. In  Table 2 are given the values o f  GNLM(1) yielded by 
convergents w39 and W4o. For  L = 0, the eigenvalues F(/( ~ are negative zeros o f  
the Airy equat ion [9, 21] and have been tabulated [31]. Eichten et al. [32] have 
calculated eigenvalues for  nonzero  L values. As in the quartic A H O  case, the 
CF  coefficients c, are observed to be positive, with even and odd indexed 
subsequences increasing monotonical ly .  This behavior  strongly suggests a Stieltjes 
renormalized series. 

5. Calculation of perturbed eigenvalues via renormalized RSPT 

The renormalized per turbat ion series obtained above were primarily designed to 
calculate the infinite field eigenvalues F (~ In  this section we show that a 
"doubl ing  rescaling" permits accurate calculation of  E (A) for 0 < A < oo from 
the original RS per turbat ion series. The method  exploits the fact that  the interval 
/3 e [0, 1] is mapped  onto the infinite interval A ~ [0, ~ )  by the renormalizat ion 
relations in Eqs. (3.12) and (4.10). 

We illustrate this method with a specific appl icat ion to the quartic anharmonic  
oscillator problem, m = 2 in Eq. (1.23). Assume we wish to calculate the eigen- 
values E(A)  o f  the opera tor  

d 2 
Y( = - dx---- 5 + x 2 + A x  4. (5.1) 
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Applying the scaling transformation x + r l /2x ,  r ~ R + to yield the new hamiltonian 

d 2 
~ r  . . . .  ]- 7"2x2 + / ~ T 3 X 4  (5.2) 

d x  2 

with eigenvalues rE(A).  Now employing the renormalized hamiltonian of Eqs. 
(3.8) and (3.10), 

d 2 
YfR = - ~ x 2  + ( 1 -- /3)X2-~-/3 x4 ,  (5.3) 

with eigenvalue perturbation expansion 

G ( / 3 ) = 2 K + l - ~ / 3 +  ~ G ( ' ) / 3 , ,  (5.4) 
n = l  

we choose the scaling parameter  ~- and the renormalized coupling constant/3 so 
that the hamiltonians in (5.2) and (5.3) coincide, i.e. r 2= 1 - /3  and/3 = Ar 3. This 
is equivalent to the condition 

/~T3 -1 - T 2 -  1 = 0. (5.5) 

Note that for A = 0, ~- = 1 and for A + ~ ,  r + 0 as A --1/3. Moreover, for A ~ 0 there 
is only one root z of  (5 .5)  which lies in the interval [0, 1]. This acceptable root 
ensures that 13 ~ [0, 1]. For practical purposes, we can locate r to prescribed 
accuracy using Newton's  method. The eigenvalue of (5.1) is then given by 

E ( a ) - - - ~ - ' G ( ~ - 3 a ) = ~  - 1G(1-~-2). (5.6) 

The basic procedure is then: (i) calculate the renormalized coefficients G (n) either 
from the RS coefficients E <n) of  Eq. (5.1) or from RSPT applied to Eq. (5.3), (ii) 
compute ~- from Eq. (5.5), (iii) " sum"  the series, either by Borel or Pad6 and 
(iv) compute E(A) from Eq. (5.6). Here, we have constructed the continued 
fraction representation to the series in (5.4), 

E(A) = r I [ 2 K + I - J / 3 + A C ( A ) ] ,  (5.7) 

and computed its convergents wi(A). Table 3 gives the estimates yielded by 
perturbation theory to order n =40  for the levels K =0,  1, 2, 3 of  the quartic 
anharmonic oscillator. These results are compared with calculations of  Biswas 
et al. [33] and Hioe and Montroll [34]. The maximum error in E(A), expected 
to occur in the limit A + oo, will be the error in the values of  the eigenvalue F (~ 
yielded, by the renormalized/3-series.  These errors can be determined from the 
results in Table 2. Also for comparison are presented the Pad6-CF sums of like 
order to the usual RS perturbation series for E(A),  as well as Borel-Pad~ 
summation of this series as reported in [26]. The Borel-Pad6 method somewhat 
extends the range of A values for which eigenvalues can be extracted. Nevertheless, 
both low-field methods break down rapidly for even moderate values of  A. 
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6. Concluding remarks 

We have shown that the construction of an "infinite-field" hamiltonian from a 
"low-field" hamiltonian is equivalent to the rescaling of spatial coordinates of 
the latter by a coupling constant (~) dependent transformation. The series in the 
"renormalized" parameter /3 is related to the low-field RS expansion by an 
invertible linear transformation. Both series exhibit the same dominant large-order 
behavior. The advantage of renormalization is that the interval A c [0, ee) has 
been replaced by the interval fl c [0, 1]. Generally, the /3 series will be Borel 
summable in this interval. The renormalization described in this paper is similar 
to that obtained by a Wick-ordering in quantum field theory. This feature has 
also been discussed and exploited by Killingbeck [35]. 

It should be noted that a similar coordinate-scaling procedure was employed 
[36] to optimize the L6wdin method of inner projection [37] to obtain lower 
bounds to eigenvalues. The derivation was different, however. The scaling x ~ ~-x 
was dictated by the condition that the one-dimensional variational energy 

e(T) = (~b(~ ~,l  ~b(~ ) (6.1) 

be minimized by ~-. This requirement yields the relation 

3A~'3 + r 2 -1  = 0, (6.2) 

which is obviously different from Eq. (5.5). In fact, Eq. (6.2) represents an optimal 
renormalization by minimizing the difference between the upper estimate e(~') 
and the lower bound afforded by inner projection. Similar results have been 
obtained for sextic and octic [36, 38] anharmonic oscillators. A criterion similar 
to Eq. (6.1) has been independently employed by Cohen and Kais [39] to construct 
convergent series expansions of perturbed eigenvalues. 
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